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ON THE STATISTICS OF LUMINESCENT COUNTER SYSTEMS 

By Frederick Seitz and D. W. Mueller 

1. INTRODUCTION 

The type of crystal counter which depends upon the combination of luminescent crystals and a 
photomultiplier tube shows promise of being of great service in the detection of radiations both be- 
cause of its high sensitivity and speed of registry and recovery. This device has been developed by 
a large number of individuals, almost too numerous to mention; however, the origin of the system 
appears to rest with Coltman and Marshall,1 who employed powdered luminescent materials of the 
type used in previous commercial luminescent systems, and with Broser and Kallmann,2 who first 
appreciated the advantages of employing large, transparent, luminescent crystals and introduced 
organic materials. 

The purpose of this paper is to analyze some of the factors which influence the statistical be- 
havior of luminescent counter systems, in order to evaluate the limits within which a counter may be 
used in making a particular type of measurement. The problems of interest range over a wide spec- 
trum of possibilities. However, the problem on which attention is focused for immediate purposes in 
order to provide a practical objective is the following: 

A crystal-counter system is employed to count the gamma rays emitted from a source in time T. 
If N gamma rays are emitted, what is the most probable number that will be counted and what is the 
range of variation to be expected ? An attempt is made to examine this problem in a sufficiently gen- 
eral way that the results will have value for a much broader group of problems. 

It is interesting to consider the component parts of this problem in order to be able to examine 
the sources of statistical variations. The components are as follows: 

1. The source, even if constant in the sense that it remains unchanged during the time T, will 
contribute to the statistical variation since the gamma rays are usually emitted at random. For 
simplicity, it is assumed that the time T is sufficiently short that variations in the source strength 
can be neglected and that the statistical variations in emission of gamma rays can be treated on the 
basis of a Poisson distribution. 

2. Unless the source is completely surrouned by the luminescent material, some of the gamma 
rays will not pass through this material and hence will certainly fail to be registered. The average 
fraction which passed through the material is designated by f, so that the average number of gamma 
rays which pass through the detecting system, if N are emitted from the source, is 

v = fN (1) 

If the source is Isotropie, f will be determined simply by the solid angle subtended by the crystal 
system; otherwise a somewhat more involved calculation is needed to determine f. 

3. A given gamma ray may or may not produce an ionizing pulse within the luminescent crystal. 
The possible mechanisms for producing such a pulse are the photoelectric effect, the Compton ef- 
fect, and pair production. In the first and third cases the gamma ray transmits all its energy to the 

/ crystal provided the energetic electrons produced by the gamma ray do not escape from the crystal. 
A greater statistical variation is possible when the range of gamma-ray energy and the atomic 
number are such that the Compton effect predominates. This would be the case, for example, if the 
luminescent material were one of the organic types such as naphthalene or anthracene and if the 
gamma rays had an energy in the neighborhood of 2 Mev. 
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The probability of a Compton encounter may be described in terms of the mean free path X for 
the process, namely 

X = 1/iJe o-c (2) 

where ne is the density of electrons in the luminescent material and <rc is the Compton cross section 
per electron. If d is the thickness of the luminescent material in the direction in which the incident 
gamma rays are traveling, the probability that a given gamma ray will pass through the system 
without producing a Compton electron is e'? where 

a = d/X (3) 

The initial energy k„ of the gamma ray and the energy k after the collision are related by the 
equation 

JL 1  (4) 
k„    1 + y(l - cos 0) K ' 

where 0 is the angle between the incident and scattered quantum and y is the energy of the incident 
gamma ray expressed in units of the rest mass of the electron (507 kev). The energy gained by the 
electron is e = k„ — k. From Eq. 4 the relation 

d(cos 0) = ^-dk (5) 

may be readily derived, connecting the differentials of cos 0 k. The differential cross section Atp for 
scattering into solid angle 6.Q is 

•      rj dfl k2 /ko     k       . ,  \ d*=iTki(?+krsme) (6) 

in which r0 is the classical electron radius e2/mc2. If the relation dfl = 2TT sin 0 d0 is used and d0 is 
replaced by dk with the use of Eq. 5 the following equation is obtained. 

a«P-»*5^(£ + £--tffl)dk (7) 

This relation is to be employed in the range of k varying from k„ to k„/(l + 2y) corresponding to the 
range of 0 from 0 to it. The quantity in parenthesis in Eq. 7 has the following values when 0 takes 
the values 0, ir/2, and ir: 

0=0 2 

l + y + r2 

0 = TT/2 
l + y (8) 

l + 2r + 2r2 

1 + 2y 

For values of y not larger than about 4, this variation is sufficiently small that it is reasonably 
good to assume that k has equal probability of falling in any part of the allowed range, or that the 
knocked-on electron has equal probabilities of receiving any energy in the range from 0 to 2y/(l + 2y) 
in units of k,). For very large values of y, the sin2 0 term in parenthesis in Eq. 7 may be neglected for 
the most interesting collisions. It is then clear from the remaining terms in parenthesis that collisions 
in which k is small compared with k„ are preferred over those in which k is near k„. 

The degree of preference is not exceedingly great for values of y in the normal radioactive range, 
and it was assumed that the probability per unit energy range is constant within the allowed limits. 
This gives the maximum statistical variation to be expected in a given Compton process. 
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The gamma ray may conceivably make a number of Compton encounters in passing through the 
crystal. There are two interesting extreme cases to consider which are referred to as the "thin" 
and "thick" approximations. In the thin case, which corresponds to values of a appreciably less 
than unity, the gamma ray has much smaller probability of making two collisions than one collision. 
In this case it is assumed that a may be chosen to be a constant for each successive collision as if 
its energy were not greatly affected by successive Compton encounters. In this event the probability 
that the gamma ray will make n encounters may be described by the distribution function 

for the range of n of practical interest. 
In the thick approximation the gamma ray transfers all its energy to the luminescent material 

in a succession of encounters once it has made the first encounter. Thus this case is equivalent to 
that in which the gamma ray transfers its energy by means of the photoelectric effect or pair pro- 
duction, provided the electrons produced do not escape. These last two cases differ from the thick 
approximation only with respect to the geometrical distribution of points within the crystal at which 
the electrons are released — a difference which is not considered here. 

The thin approximation is best achieved by employing a very thin crystal so that a is small 
compared with unity and also employing soft gamma rays, for which y is 1 or less, which lose rela- 
tively little energy in a Compton encounter. It is probably not a case which would be met in practice 
but is interesting as one statistical extreme. It should be remarked that this limit cannot be achieved 
by going to very soft radiation, for such radiation is scattered almost isotropically. The distance 
which the scattered photon must traverse is usually different from that which the original photon 
would have had to travel to pass through the crystal because it is traveling in a different direction. 
Thus a is not a constant in this limit even though the energy of the photon is not greatly altered by 
a Compton collision. The thick case can evidently be achieved by using a thick crystal and is the one 
that will be met more commonly in practice. 

4. The number of luminescent quanta which the crystal emits can vary even when the energy 
transmitted to the crystal is fixed because of statistical fluctuations in the manner in which the 
exciting radiation is distributed among the different excited states of the medium. This type of sta- 
tistical fluctuation is partly responsible for the straggling in range of heavy ionizing particles as 
they pass through matter. In order of magnitude the fractional variation in the number of light 
quanta is l/Vv , where r\ is the average number. Since in this paper cases in which TJ is 1000 or 
larger are of interest, corresponding to Compton encounters in which the knocked-on electron gains 
several hundred kev of energy, this source of statistical variation will be neglected. It could be 
significant in cases in which the particle being detected produces very few light quanta, as for very 
soft beta rays or x rays. 

5. Only a fraction of the light quanta produced in the luminescent crystal will reach the photo- 
electric surface. The fraction Q which does is determined primarily by geometrical factors involving 
the angular distribution of emitted light and the angle subtended by the photosurface relative to the 
luminescent material, a will be in the neighborhood of 0.5 for a relatively thin layer of luminescent 
material which is immediately adjacent to the photosurface but may be considerably smaller if the 
luminescent crystal is somewhat farther away. It may be enhanced by placing a reflecting backing 
on the luminescent material or by employing other devices which cause the light to be "funneled" 
toward the photocathode. 

6. Only a fraction p of the photons striking the photosurface will eject electrons from it. This 
parameter appears4 to be about 0.03 for the type of photosurface in which the photons penetrate the 
photosurface and electrons are ejected from the back side, and it appears to be about 0.05 for the 
type of photosurface for which electrons are ejected from the front surface. (Morton and Mitchell4 

have shown that the pulse-height distribution is broader than that expected on the basis of a Poisson 
distribution of electrons at each stage.) 
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7. The electrons ejected from the photocathode will give rise to pulses of various size, de- 
pending upon the accidents which befall the primary photoelectron and the secondaries which it emits 
from the multiplying surfaces. Actually there are two problems associated with an analysis of the 
pulse distribution: first, the problem of determining the probability that the photoelectron will 
actually create a measurable pulse and second, the problem of determining distribution of pulse 
sizes when pulses are generated. If the secondary emission ratio is s, the probability that the 
photoelectron will not eject a secondary from the first stage of the multiplier is e-s, provided it is 
assumed that the emission of secondaries is random. This probability is of the order of a few per 
cent for normal values of s (between 3 and 5) and is essentially equal to the probability that the 
primary electron will not generate a pulse. Since the percentage of uncertainty in p is at least as 
large as this, this factor may be combined with p in the following discussion, and the assumption 
may be made that a measurable pulse is produced whenever an electron is ejected. The distribu- 
tion of pulse sizes has been measured by Engstrom4 using a light source. Later, his results will 
be approximated with an appropriate mathematical function. Evidently the pulse distribution is not 
important if the luminescent counter is employed simply as a counter of events and if a pulse of 
arbitrary size can be employed as the signal for a significant count. Knowledge of the distribution 
becomes important, however, if a pulse discriminator is employed so that only pulses larger than 
a certain size are counted (as when a noise background is eliminated) or if the integrated current 
of the photomultiplier is recorded. The first of these cases may be treated by redefining the 
parameter p as the probability that an observable pulse is measured when a photon strikes the 
cathode and introducing measured values of this quantity. The second case is discussed in detail. 

2. THE GENERATING FUNCTION AND ITS APPLICATIONS TO THE PROBLEM5 

The generating function was introduced into probability theory very early in its development, 
and some of its properties are described in textbooks, for example, the book by Uspensky.5 The 
authors have benefitted by reading a mimeographed survey of the subject by O. R. Frisch. An 
account of some of the relations employed here is given by Jorgenson.5 

The aggregate contribution of the various unit parts of the photomultiplier system to the sta- 
tistical variation of the system can be determined most simply with the use of generating functions 
appropriate to each stage. If pn is the probability that a given observation shall yield n events, for 
example, that the source in the problem wiU emit n gamma rays in time T, the generating function 
G(«) for the process of observation is defined by the series 

G(e) = p0e° + pj,«1 + ft,«2 + ... + pn«n + • • • (10) 

The generating function is readily found to possess the foUowing properties 

G(0) = Po       G(l) = 1 

The mean value m of a series of observations, namely 

m = E nPn 
n 

is readily seen to satisfy the relation 

m=(df)«=i 
Similarly the variance of a sequence of observations, defined by the relation 

v = £ (n - m)2Pn = £ n2pn - m2 

n n 
is readily found to be related to the generating function by the equation 

V~[de2     de     Vdc / j« = 1     \de2/e^ 

(ID 

(12) 

(13) 

(14) 
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In the case of the Poisson distribution 

Pn = ff e-ot (16) 

G(c) is readily found to be 

G(e)=ea(e-1) (17) 

whence 

m = of       v =a (18) 

In the following calculations the ratio  -fv/m is employed to provide a measure of the fractional 
deviation from the mean or the fractional deviation. In the case of the Poisson distribution this 
quantity is the familiar ratio l/Ya. 

Although the generating function is interesting and useful because of the properties already 
outlined, its real service appears when the following two additional properties are considered: 

I. Suppose that, instead of making one observation of the number of events of interest (such as 
the numbei of gamma rays emitted from the source in time T), two observations are made (e.g., for 
two time intervals T) and ask for the probability that n events are observed en toto is asked for. 
The probability for this is the sum 

PnPo + Pn-i Pi + Pn-2 P2 + • • • + P0Pn 

which is the coefficient of <n in the expansion of G2(c). This is a special case of the more general 
j. theorem: The generating function governing the probability distribution of the sum of r identical 

observations is Gr(«) if G(e) is the generating function for a single observation. 
II. Suppose next that a situation is being dealt with in which each member of a set of initial 

events that are statistically distributed (e.g., gamma rays from a source) can give rise to a series 
of events of possibly different type (e.g., production of Compton electrons) and the statistical distri- 
bution of the second type of event is asked for. Let G^e) be the generating function for the first type 
of event (e.g., the number of gamma rays emitted by the source in a given time for the example 
under consideration) and G2(«) be the generating function for the number of events of the second type 
associated with one primary event (e.g., the number of Compton recoils produced by a single gamma 
ray). It Is readily shown that the generating function GrjU) for the number of events of the second 
type when the statistical variation of the number of events of the first type is taken into account is 
given by 

Gn(e) = GjG2(e)] (19) 

The validity of this theorem may readily be demonstrated by writing Gn in the form 

%(«) = p0G°(£) + PlG^£) + p2G|(£) + p3G2
3(«) + ... + pnGnU) + ... (20) 

in which pn is the probability of n events of the first type, so that 

Gi(e) = p0«° + Pj*1 + p2t
2 + ... + pn«n + ... 

The coefficient of pn in Eq. 20 is the generating function for the total number of events of the second 
», type when it is known that n events of the first type have occurred, in accordance with theorem I. 

This coefficient appears suitably weighted with the probability that n primary events will occur. 
Using Eqs. 13 and 14, the mean and variance associated with the generating functions 

GiU) = G*(e)        Gn(«) = G1[G2(£)] (21) 

may readily be found which occur in the cases I and n described above. The results are, respectively 

mj = rm       Vj = rv (22) 
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in which m and v are the mean and variance associated with a single observation in case I, and 

mjj = n^m.,       VJJ = v,m| + v.;!^ (23) 

It is clear that, if case II were extended to that in which the second type of event can give rise 
to a third type (e.g., if a Compton electron can give rise to ion pairs or to luminescent quanta) which 
is statistically distributed in accordance with a generating function G3(e), the complete generating jjj 
function which takes account of the statistical variation in events of the three types is | 

Gm = GjG2(«)] (24) 

for which the mean and variance are, by analogy with Eq. 23 

mm = mnm3     vm = vnm3 + v3mn (25) 
The appropriate form of generating functions to be employed in each of the constituent processes 
described in Sec. 1 will now be examined. 

1. Emission from source. Since the gamma rays are emitted at random, the appropriate gen- 
erating function is of the Poisson type, Eq. 17, namely 

G,(e) = eN(«-D (26) 

in which N is the average number of gamma rays emitted in the time T. 
2. Passage of gamma rays into system. A given gamma ray either does or does not enter the 

crystal. If the probability that it does is f, the generating function for this event is simply 

G2U) = (1 - f) + fe (27) 

Using Eq. 19, it is readily found that the generating function G2(c), giving the distribution of proba- 
bilities that the gamma rays emitted at random by the source enter the crystal, is 

G2'(e) = G1[G2(e)] = eNf(e-l)   = ev(e-l) (28) 

where v = fN. 
3. Generation of photons. As stated in the introduction, the assumption is that a fixed fraction of 

the energy which the gamma photon gives up to the crystal is transformed into light quanta. If this 
energy is E, the number of light quanta produced is then 

V = /3E (29) 

where ß is a factor measuring the efficiency with which the luminescent crystal converts the ex- 
citation energy it receives into light quanta. If hy is the average energy of the luminescent quanta 
emitted, ßhv is the fraction of the energy of excitation which appears in the form of luminescent 
radiation. This may be as large as 0.20 for some of the most efficient materials but can easily 
be much smaller. According to Broser, Kallman,   and Martius6 the efficiencies of energy conver- 
sion in zinc sulfide activated with silver and in the organic materials naphthalene, diphenyl, and 
phenanthrene are given in Table 1. 

Table 1—Efficiency of Energy Conversion in Luminescent Materials 
under Gamma-ray Excitation 

(After Broser, Kallmann, and Martius. Values in fractions.) 

ßhv 

ZnS:Ag 0.135 
Naphthalene 0.05 
Diphenyl 0.075 
Phenanthrene 0.11 
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The investigators find somewhat different efficiencies for beta-ray excitation. Similarly, Colt- 
man, Ebbighausen, and Altar7 have found the energy conversion in calcium tungstate to be 5.0 per 
cent for x rays. The interest here is in detailed values of the efficiency in Sec. 3. 

As mentioned in the introduction there are two extreme approximations that are of interest, 
namely, those designated as "thin" and "thick." In the second case, all the energy of the gamma 
ray is transmitted to the crystal once a first collision has occurred. The number of quanta emitted 
is then equal to J?0, the value of 17 when k„ is the energy of the gamma ray. If c is the probability 
that such a collision occurs, the generating function for the number of quanta is evidently 

S3U) = (1 - c) + C€"o (30) 

If this is combined with Eq. 28, the complete generating function for the production of luminescent 
quanta in the thick case is 

S^ = exp [v c(e*° - 1)] (31) 

In the thin case there are two sources of statistical variation, for both the number of Compton 
encounters and the energy transferred to the counter per collision may vary. The first of these 
quantities is distributed in accordance with the Poisson law, Eq. 17, in the ideal thin case, for 
which the generating function is 

H3 = e«^"1) 

where a is the ratio (Eq. 3). The energy which the Compton electron receives is randomly distributed 
between 0 and the maximum value 2k„y/(l + 2y) in the approximation described in paragraph 3 of the 
introduction. This means that the number of quanta generated will vary between 0 and a maximum 
Tjm, where 

^--vfrk (32) 

K3(£) =    1    fm eVäv = e*P (»m log*) 

in which ß is the efficiency factor appearing in Eq. 29. A generating function for this random dis- 
tribution is readily constructed by treating JJ as a continuous variable and is 

-1m 
Ovn   I Yi     \r\rr £   1   —   1 

(33) 
11 1 t lu- e 

for which the mean and variance are T)m/2 and 1m/12, respectively. The complete generating func- 
tion for the number of quanta associated with a single gamma ray is H3[K3(e)]. 

4. Emission of photoelectrons. A given light quantum either does or does not emit a photoelectron 
from the photosurface of the multiplier. The probability that it does isflp, so that the generating 
function for this process is 

G4(«) = [(1 - flp) + ßpe] (34) 

As stated in paragraph 7 of the introduction, it is assumed that a measurable pulse is associated 
with each photoelectron ejected from the cathode of the multiplier. 

5. Generating function for pulse distribution. Engstrom4 has measured the pulse-height distri- 
bution of a typical multiplier tube. His empirical distribution is represented by the analytical 
function 

f(h) = Ah2 exp (-h/p) (35) 

in which h is the pulse height on an arbitrary scale, p is a constant measuring the width of the dis- 
tribution, and A is a normalization factor l/2p3. A generating function 

GB(e) = 1/(1-p log e)3 (36) 



8 AECU - 715 

may readily be constructed for this distribution. The mean and variance are 

m5 = 3p       v = 3p2 (37) 

It will be seen later in this paper that it is not necessary to know p in order to determine the frac- 
tional deviation of interest here. 

3. CORRELATION BETWEEN GAMMA RAYS FROM SOURCE AND PULSES IN MULTIPLIERS 

The probability that a gamma ray from the source will produce a pulse in the multiplier is dis- 
cussed in this section. The thick and thin cases are discussed separately. 

A. Thick Case 

In the thick case, a gamma ray passing through the crystal has probability c of making an en- 
counter, in which case it generates T)0 photons. The distribution of such encounters is random, being 
governed by the Poisson distribution. The average number is Nfc = vc, and the deviation is vc Thus, 
as far as luminescent pulses are concerned, the effective strength of the source is pc. 

The probability that n of the IJ0 light quanta will eject photoelectrons from the multiplier is given 
by the generating function 

[Gi{e)]% = [(1 -Op) +£?p€]*° (38) 

The probability that none will eject electrons is (1 — .Sp^o, so that the probability of observing a 
pulse, if one electron is sufficient to produce an observable pulse, is 

p = 1 - (1 - Qp^o (39) 

Since v0 is usually large compared with unity, this may be approximated by 

P= 1 - exp (-n0flp) (40) 

in which the quantity 

ri0aP (41) 

is the average number of photoelectrons emitted from the cathode. With the use of the rule, Eq. 25, 
for determining the mean and variance of a chain of events, Lhe mean number of counts is 

M = Nfc[l - exp (-Tj0flp)] = NfcP (42) 

whereas the variance is 

V = NfcP (43) 

The fractional variance is 

*J-L-Y (44) rfcP/ v  ' M   \mcPj 

B. Thin Case 

There are four statistical processes in the chain extending from the passage of gamma rays into 
the crystal to the ejection of electrons from the photocathode, namely, those described by the gen- 
erating functions G2', H3, K3, and G4 of the preceding section. The number of electrons ejected from 
the cathode when a single gamma ray passes through the crystal is governed by the generating 
function 

EU) = H^KjCU)]] (45) 
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The probability that no electron will be ejected and hence that no pulse will be recorded is E(0), 
so that the probability of a pulse is 1 - E(0), and the generating function for pulses is 

{E(0) + [1-E(0)]€] (46) 

Hence the mean and variance in the number of pulses are 

M = V = Nf[l - E(0)] (47) 

Since ßp is of the order of 3 per cent even when ß is unity, it is readily found that K3[G4(0)] can be 
approximated by the expression 

K3[G4(0)] = 
[l-exp^-ffQp)] (48) 

A simple examination of E(0) shows that it approaches e~a when r]mßp is large compared with unity 
and approaches exp (-arimQp/2) whenT)mßp is small. It may be concluded that, in both the thick and 
thin cases, the counts are governed by a Poisson distribution and that it is desirable to have the 
quantities c and 1 - e~a as near unity as possible and the quantities r;0ßp and?]mßp somewhat larger 
than unity, although there probably is little advantage to having them as large as 10. 

Suppose one is dealing with gamma rays in the vicinity of 1.5 Mev, to provide a concrete example. 
In this case the mean free path for the Compton effect in a material such as naphthalene is of the order 
of 15 cm. Hence if the crystal is a cube 5 cm on an edge, the factor e~a is 0.72. The Compton elec- 
tron will have an average energy of the order of 0.7 Mev, so that the average number of luminescent 
quanta produced is 10,000 if the energy efficiency is taken to be 0.05. Choosing p to be 0.03, it is 
found that7?mßp/2 is 300 ß. Hence ß should be at least 10-2 if each Compton electron is expected to 
register with reasonable faithfulness. If it is assumed that the photosurface of the multiplier has an 
active area of about 15 cm2 and that this surface is 5 cm from the center of the crystal, the factor ß 
should be as large as 0.05 even if the photons are isotropically distributed, which would guarantee 
faithful counting of Compton encounters. The same photosurface would be more nearly borderline if 
the crystal were chosen to be a 10-cm cube and the surface were placed 10 cm from its center, for 
then ß would be about 0.01, which is very close to the limit set above. In fact, those Compton en- 
counters which take place at points within the crystal which are most distant from the surface may 
fail to register if the photon distribution is isotropic. In this event it may prove profitable to employ 
a method of light tunneling, for example, by covering all surfaces of the crystal except that opposite 
the multiplier with a reflecting metallic covering. 

4. PHOTOMULTIPLIER CURRENT 

Consider next the current in the photomultiplier, or rather the charge which arrives at the 
anode end when N gamma rays are emitted from the source. The "thick" and "thin "cases are dis- 
cussed separately once again. 

A. Thick Case 

In this case the distribution of charge in the photomultiplier may be regarded as if compounded 
of the three statistical processes which are described by the generating functions 83', G4, and G5 of 
Sec. 2. The first of these functions gives the distribution of photons in the crystal associated with the 
N gamma rays, tlv second function gives the distribution of the photoelectrons from the cathode of 
the multiplier, and the third function gives the distribution of pulses in the multiplier. The mean and 
variance of these distributions are as follows: 

Mean Variance 

I/CT)2 

ßp- (ßp)2^ ßp 
3p2 

S3 vcr\0 

G4 ßp 
Gs 3p 
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The quantity (Op)2 may be neglected in comparison withßp since the latter is at most a few per cent. 
By compounding these statistical quantities in accordance with the rule, Eq. 25, the following 

values of the mean and variance for the charge in the multiplier are obtained: 

M = 3pj/c»j0flp 

V = 3p2 vc Tj0flp (4 + 3n0£p) ....... «„,,.. o- n-, (49) 

The fractional variance is 

Vv    r4 + 3n0gp 
M ~ L 3i/c T)0flp (50, 

This quantity is independent of p, as pointed out previously. Moreover, it becomes independent of 
the quantity x =rj0flp when this quantity is large compared with unity. The condition placed upon x 
for this limit to be valid is somewhat more stringent than the condition required for faithful counting 
of luminescent pulses. That is, x must be larger than 5 for this approximation to be precise. 

B. Thin Case 

In this approximation the distribution of pulses is governed by a generating function that is 
compounded of the generating functions G2', Hs, K3, G4, and G5. Respectively, these correspond to 
the distribution of gamma rays in the crystal, the distribution of Compton encounters, the distribu- 
tion of luminescent quanta produced in the crystal, the distribution of photoelectrons from the 
cathode, and the distribution of pulses in the multiplier. The corresponding means and variances 
are as follow: 

Mean Variance 

G2' V V 

Hs a a 
K3 "m/2 T,mA2 
G4 <2p ßp 
G5 3p 3P2 

The mean and variance for the distribution of pulses is found to be 

(51) 
M = 2 p v a VmSp 

3 r     i l 
V = -p2vavmQp [4 +2 "mßP (4 + 3a)J 

Once again it is noticed that p drops out of the fractional variance. Whenever the quantity y = 1mßp 
is very small compared with unity, the fractional variance may be approximated by the expression 

VV    (      8/3       V/2 r„v 

In the opposite extreme, in which y is very large compared with unity, the fractional variance is 

Vv _ A + 3gV/2 
M   ~ \   Zva j 

which approaches 2/ VSa^if a is small compared with unity and approaches l/Vv if a is very 
large. The latter case, in which a is large, is in contradiction with the assumptions of the thin 
approximation; however, it is of mathematical interest. 

(53) 
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5. FLUCTUATIONS IN CHARGE ON CONDENSOR 

When dealing with a high-intensity source, it is frequently convenient to feed the current pulses 
from the photomultiplier into a condensor which is shunted with a high resistance and measure the 
voltage across the condensor in order to provide a measure of the average current which arrives 
at the condensor. This voltage exhibits fluctuations because the- pulses are distributed statistically 
both in magnitude and in time. The influence of the distribution in time has been investigated by 
Schiff and Evans8 for the case in which the pulses are equal in magnitude. The generalization of 
their results when the pulses vary in size is of interest here. 

If the capacity of the condensor is C and the shunting resistance is R, the decay time for the 
shunted capacity is T = RC. A charge which is fed into the condensor at time t' will have decayed by 
a factor exp [- (t - t') h ] by the later time t. 

The assumption is that the charge associated with each pulse of the multiplier arrives in a time 
that is short compared with the decay time of the condensor. It is also assumed that the pulses are 
distributed in time in accordance with the distribution law governing the frequency with which gamma 
rays enter the luminescent crystal, that is, in accordance with the generating function G2'(e) of Sec. 2 
(see Eq. 28). Since interest is in specific intervals of time t, v in Eq. 28 is replaced by nt, where n 
is the average number of gamma rays entering the crystal per unit time. Those gamma rays which 
do not excite the crystal will give rise to pulses of 0 size. For the purposes of this section, the 
generating function is designated for the pulse in the photomultiplier associated with the passage of 
a single gamma ray into the crystal by G(e). The pulse size will be assumed to be expressed in units 
of charge. G(e) will differ in the soft and hard approximations but may be left arbitrary for the 
moment. 

Consider the gamma rays which arrive in the time interval dt' between t' and t' + dt'. The 
generating function associated with the current they contribute to the condensor at the time t' is 

1 + ndt'[G(e) - l] 

which is the expansion of G2'[G(e)] in terms of dt' when v is replaced by ndt' 
charge associated with this generating function is 

(54) 

The mean value of the 

(55) ndt'G'(l) 

this mean contribution will have decayed by a factor exp [(f - t)/r] by the time t. Thus the mean 
charge at time t resulting from the accumulation for all previous times is 

nG'(1) J_°„ exP K*' - t) A ] dt' = nrti' (1) (56) 

G'(l) evidently is the mean charge pulse Q in the photomultiplier associated with the entrance of a 
single gamma ray. 

Similarly, the variance in the charge on the condensor at time t is the integral of the variance of 
Eq. 54 from t' = -oo to t' = t with a weighting coefficient exp [2(t' - t)/r] since the decay constant for 
the square of the charge is twice as large as that for the charge. The result is 

y[G"(l) + G'(l)] (57) 

The quantity G"(l) + G'(l) is the mean of_the square of the charge pulse associated with a single 
gamma ray, which we shall designate as Q2. This is also equal to the variance of the charge pulse 
associated with a single gamma ray plus Q2. 

The fractional variance of the charge on the condensor is 

M 
Q2_ 

2rn Q: 

y2 
(58) 
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The coefficient (1/2-rn)^ represents the result obtained by Schiff and Evans for pulses of constant 
amplitude. The coefficient QVQ2 for the thick and thin cases may now be investigated. 

A. Thick Case 

In this case the generating function G(«) is SgJGjGsU)]}. The means and variances of G4 and G5 

were tabulated in the previous section. The corresponding quantities for G3 are T]0c and rtlc(l - c). 
By combining the means and variances 

M = Q = 3p 7)0cßp       V= 3p2 7?0cflp[4 + 3ij0flp(l-c)] (59) 

are obtained. Moreover, 

Q2 = V + M2 = 3p2 J?0cßp(4 + 37j0ßp) (60) 

so that 

\W) = U^FJ (61) 

As should be expected, this approaches 1/ Vc whenii0ßp becomes sufficiently large, for the pulses 
then approach the constant size and the only source of statistical variation is in the random pro- 
duction of luminescent bursts. 

B. Thin Case 

In this case G(e) is H3(K3[G4[G5(£)]}) whose averages were tabulated in the previous section. 

M=Q = | pa„m<2p        V = 3p2ar,mßp(2+T)mßp) (62) 

Q2 = 3p2 a nmßp [2 + nmflp (l+l a)] 

(g& _ [4 2 + r,mQp(l +%a)VA 
VQ2/       L 3 a rtmäp J 

In this case Q2/Q2 approaches (4/3 + a)/a when Tjmßp becomes sufficiently large. 

6. CONCLUSIONS 

1. The statistical variations in a counting system which consists of a source, a luminescent 
crystal, and a photomultiplier are examined. It is assumed that the source is constant for a fixed 
period of time, although it emits particles at random. For definiteness and to provide a maximum 
degree of statistical variation, it is assumed that the source is a gamma emitter and that only a 
fraction of the gamma rays fall on the luminescent crystal. The method of generating functions is 
employed to treat the chain of events which the particles emitted from the source engender. Two 
oppositely extreme cases are considered, namely, that in which all the energy of a gamma ray which 
enters the crystal is transferred to the electrons and that in which the gamma ray transfers only a 
portion of its energy in a manner that depends upon the Compton encounters it makes. The two ap- 
proximations are referred to as the "thick" and "thin" approximations. The first can be realized 
by using a crystal which is sufficiently thick that the gamma ray is completely absorbed. The second 
case can be approximated by using a very thin specimen and using gamma ray energies for which the 
Compton process predominates. 

' 1 
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2. As might be expected the results show that the effectiveness of the system depends upon the 
ability of the crystal to receive energy from the crystal. They also show that a measure of the ef- 
fectiveness of the remainder of the system is provided by the quantity 

x =rißp 

Here rj is equal to the number of light quanta, TJ , produced per gamma ray in the luminescent crystal 
in the thick case and is, nm, the maximum number which can be produced per Compton encounter in 
the thin case, ß is the probability that a light quantum emitted from the crystal will strike the photo- 
surface of the multiplier, and p is the probability that a photoelectron will be emitted from the 
cathode. The system will be a faithful counter of those gamma rays which transfer energy to the 
crystal provided x is of the order of 5 or larger. The statistical fluctuations are then determined 
primarily by the Poisson distribution of encounters in the crystal. If, on the other hand, the current 
from the multiplier is measured instead of the rate of counts, the contribution of the photomultiplier 
to the statistical error is appreciable until x is considerably larger than 5, although this error can 
be reduced to that corresponding to the Poisson distribution of encounters in the crystal when x is 
increased. 

The statistics of the case, in which the pulses are fed into a capacitor with a time constant and 
the voltage of the capacitor is measured, are treated from a standpoint somewhat more general 
than that considered by Schiff and Evans. 
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